Newton's Laws

- Forces & Motion
- Gravity

The four currently understood forces in nature
- Gravity
- Electro-Magnetic (Maxwell, 1862)
- Weak Nuclear
- Strong Nuclear

Not understood
- Dark Energy & Accelerating expansion of our universe
- Nature of Dark Matter, the dominant form of matter

Energy Budget of Our Universe:
- Dark Energy (68%)
- Dark Matter (27%)
- Atoms (5%)
 + Ns, Hs, etc.

Physics as we know it, chemistry, engineering...
- Dogs, cats, tables, you, we...
MCA.2

Newton's 1st Law

A **object** which **keeps** or **starts** to **move** with a **constant** velocity experiences a **net force** only while being **accelerated**.

\[
\text{Net Force} = m \cdot \text{Acceleration} \]

Newton's 2nd Law

The **resulting force** equals the **mass** times the **acceleration**.

\[
f_{\text{net}} = m \cdot \vec{a}
\]

Newton's 3rd Law

For every **force** there is an equal and **opposite** **force** acting on the **other object**.

\[
f_{AB} = -f_{BA}
\]

Many of our exercises will involve finding the **net force** on an object, given the **forces** acting on it.
We already know a lot for how to use Newton's laws:

* Kinematics, 1-D & 2/3-D motion.

This is the answer for a constant force on an object:

\[\mathbf{r}(t) = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2 \]

Constant acceleration due to a constant net force.

* We will encounter non-constant forces, including friction.

* Additional essential concepts:
 * Energy & Conservation of Energy
 * Momentum & Conservation of Momentum
 * Rotation
 * Angular Momentum & Conservation of Angular Momentum
 * Gravity for large distances & when not close to surface of the earth.
Another essential concept

Inertial Frame of Reference

Newton's laws work only in an

Inertial Reference Frame

We will take the surface of Earth as an inertial
frame of reference, but
this is not quite true!
Earth spins, Foucault
pendulum

Inertial

- outer space, far from everything
- your dorm room
- a car moving straight on a flat road, w/o vibrations

* Not really inertial, but close!

Non-Inertial

- a car rounding a curve at constant speed
- a child on a swing
- a plane landing in rough weather.
- a spaceship in outer space far from everything, accelerating
- the top floor of a tall building swaying gently in a strong wind
Some Forces:

- Gravity near the surface of the Earth: $\vec{F}_g = mg = \text{Weight}$

- Normal Force

- Contact forces, due to electromagnetic force

- Friction

Ball of mass M on floor: Weight, due to gravity.

$\vec{F} = \text{upward force counteracting gravity.}$

Box on ramp:

$\vec{F}_f = \text{Friction at surface keeps box from sliding down ramp, or slows progress of a sliding box.}$

Let's talk about all the forces on the box:

- Gravity (Weight)
- Friction
- Normal
\[W = -m \sin \phi \]
Some forces, continued:

Springs: Force opposite compression / extension

\[F_{\text{spring}} = -kx \]

Book uses \(F = -kx \), which is the same as \(F = -kx \) with \(x_{\text{equilibrium}} = 0 \)

(Signed distance from equilibrium position)

Compressed

\(F = 10 \)

Equilibrium

\(F = 0 \)

Extension

Equilibrium position

Any small motion about a point of equilibrium with a (pure) spring

Strings - take a force around a corner.
\[F = \text{Tension} \]

\[\sum F_y = m g \]

\[\sum F_x = \text{Force} \]

\[\text{Pulley} \]